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We present techniques for evaluating the coefficients of the leading terms for both the 
high ([ = 0) and low (f > 1) energy limits of classical nuclear Coulomb excitation. Results 
are given for ion-induced electric and magnetic transitions up to X = 10 that are required 
for astrophysical calculations of the effectiveness of certain stellar environments in en- 
hancing the radiative deexcitation rates of important long-lived isomeric states. 

1. INTRODUCTION 

In calculating the classical Coulomb process [l-3] of inducing excited-state transi- 
tions in a heavy target nucleus by the time-varying electromagnetic field of an 
incoming ion projectile (that does not “penetrate” the nucleus), the problem can be 
conveniently separated into: (i) a purely nuclear part that depends only on the internal 
details of the transition, and (ii) the external details of the relative motion of the 
target and the projectile during their mutual electromagnetic interaction. The work 
presented here is motivated by the recent interest in calculating the effectiveness of 
inelastic charged-particle collisions in the stellar interior [4-61 in enhancing the 
spontaneous radiative-decay rates of long-lived isomeric states [7-91 formed in 
various processes of nucleosynthesis. Most isomers of interest are encountered in 
studies of branching in the path of heavy element formation by slow neutron capture 
(the so-called s-process) [9, lo]. 

In the case of both electric and magnetic transition types, the semiclassical cross 
section for exciting a given transition in the target nucleus is proportional to a 
quantity known as the Coulomb excitation function [l]. These functions in turn 
depend only on a dimensionless parameter, 5, which is a measure of the relative 
energy change of the incident projectile during the encounter. The limit [ + 0 
physically corresponds to a “sudden” collision with negligible energy change, while the 
other extreme of f > 1 obtains for a slow adiabatic collision in which the projectile 
gives up a significant fraction of its initial energy. These important Coulomb excitation 
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functions, f&) and fMn(@, for electric and magnetic excitation of multipole order X 
are given [I] explicitly as 

and 

I 'A+~.u(~, 5)I" (Co' 2) 
' ' cos(e/2> &, 

[sin(e,2)13 

(A - p)! (A + p)! 
Jh, 4 = [(A - p)!! (A + /4!!]2 ’ 

and the classical orbit integrals are defined as 

L”(& 5) = fin exp[i<(c sinh w + o)] 
[cash o + E + i(c2 - l)ljz sinh W]~ 

(6 cash w + l)A+” dcx (3) “-02 

for E = i/sin(8/2). Thus, the Coulomb excitation functions are seen to be somewhat 
complicated quantities to evaluate numerically, since they involve performing the 
indicated double integrals for each value of t. 

For approximate applications in the anticipated astrophysical context, averages of 
the Coulomb excitation rates over a Maxwell-Boltzmann distribution of relative 
velocities [4, 51 can be easily performed [6] for the limiting cases of 5 = 0 and e > 1. 
However, the wide variety of multipole orders and types encountered by Ward 191 
(e.g., E3, M3, E4, E5, E6, M7, E8, ElO) demands an automated extension of the very 
limited 5‘ = 0 results of Alder et al. [l], and of the f > 1 results of Brussaard, et al. 
[ll]. This work provides it. In Section 2 we present the manipulations required to 
evaluate numerically the leading coefficients offnA(t = 0); and in Section 3 we show 
the much more extensive considerations required to obtain the asymptotic behavior of 
fflA([ > 1) and contrast our numerical results with those of Brussaard et al. [ll]. 

2. THE .$ = 0 LIMIT 

For high projectile temperatures and/or small excitation energies we are interested 
in the quantities f&(O) and f&O). We follow the notation of Alder et al. [l] during 
our development and for electric transitions examine the function 

(4) 
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where the orbit integral is given in this limiting case by 

m [cash w + E + i(3 - 1)1/2 sinh wlU dw. 
(E cash w + l)A+“ (5) 

Note that the 6 = 0 limit of a sudden collision has removed the troublesome oscillating 
exponential factor from the integrand of the orbit integrals. The integral in (5) can now 
be performed explicitly [l] to give 

I&l, 5 = 0) = (2T/E)1’2 (A - l)! (6” - 1)‘2+l’* P;:;:,/2(1/E), (6) 

where P,B is the Legendre function of half-integer and negative order. For the particular 
values of 01 and /I in (6), these functions are in fact terminating series in elementary 
functions of the angle 0. Although the resulting trigonometric expressions allow the 
indivdiual YASp to be evaluated explicitly in closed form, the general cases for these 
integrals are much more readily evaluated numerically by the following transforma- 
tions to rapidly convergent series. Changing variables in (4) to x = sin(f?/2) and 
using (6) results in 

Following a similar prescription for the magnetic transitions, we find that the required 
quantity 

(8) 

can be easily transformed into 

Furthermore, since we evaluate these integrals numerically, it is quite useful to trans- 
form the Legendre functions as [12] 

where r is the usual gamma function and F is Gauss’ hypergeometric function defined 
by 

(11) 

for the Pochhammer symbol (ah z I’(@ + I)/Qu). This series is absolutely convergent 
for all ) z 1 < 1 and is therefore quite useful for computational purposes since the 
argument in (7) is bounded by 0 < (1 - x)/2 < 4. 



and 

f.h(f = 0) NY 

(2h -/- I)2 
(u+A.odd) 

s [ t 
3 l-x 2 

X ‘~~“-~(l -x2) F’X+p+ l,h--+ l;“+z;-T-)] dx, 
0 

(13) 
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Assembling all of these results and using the general Eqs. (1)and (2) for the Coulomb 
excitation functions, the complete expressions for evaluating the .$ = 0 limit become 

= 

where a,,, is the Kronecker delta symbol and where we have defined the quantity 

647r3 
[ 

(A - l)! 
I 
2 

B(h) = 4”(2X + 1)2 I’(x + 3) * 

An additional point to note is that the use of fna([ = 0) for small 5 is actually 
correct to first order in 5 since 

l-x7dw&=o = 0. (14) 

This result is most easily established by noting that the properties (i) Ih,,(O, -5) = 
&,-JR 0, and (ii> 44 -1.4 = A@, CL> 1 in conjunction with merely reversing the 
order of the summations in (1) and (2)] show that&(g) =fm,(--O. Thus we have 
that the Coulomb excitation functions are continuous and even functions of g, and 
simple Taylor series expansions offnA(Tflg) about g = 0 confirm (14) and show that 

Equation (14) is demonstrated numerically by the h >, 2 curves of Alder et al. [ 1, 
Fig. 11.41. 

The numerical results obtained from evaluating expressions (12) and (13) for 
electric and magnetic transitions up through h = 10 are those given in Table I. The 
required integrals were evaluated by application of a simple 32-point Gauss-Legendre 
quadrature scheme (which gave agreement to at least six digits with the three analytical 
results given below) over the interval [0, 11, and the hypergeometric functions appear- 
ing in the integrands were calculated by straightforward term-by-term series expansions 
at each point. To give confidence in the general accuracy of the results in the table, we 
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TABLE I 

6 ---, 0 Limit of the Coulomb Excitation Functionsa 

Multipole order 
0) 

1 4 

2 0.8954 

3 3.797( -2) 

4 2.861(-3) 

5 2.865(-4) 

6 3.413(-5) 

7 4.571(--6) 

8 6.666(-7) 

9 1.037(-7) 

10 1.696(-8) 

-b 

0.1936 

4.495(-3) 

2.317(-4) 

1.760(-5) 

1.686(-6) 

1.889(-7) 

2.365(-8) 

3.224(-9) 

4.693(-IO) 

u Note that r(s) = r x 10”. 
D Both fEl and J&1 diverge logarithmically as 6 -, 0. 

may compare them to the only three cases to have been integrated analytically. The 
results as given by Alder et al. [l] are 

f&(O) = g (g - ;, = 0.895424..., 

f&O) = g ($ - $) = 0.0379721..., 

and 

fMZ(O> = t$ ($j - d, = 0.193585... . 

They have also given the additional numerically calculated point [l, Table 11.4, p. 4591, 

fE4(0) = 0.002862. 

For A = 1, (12) and (13) show that the excitation functions diverge logarithmically 
in the limit 5 + 0. The excellent numerical agreement between the exact values given 
above and the corresponding ones listed in Table I is evident and thus adds confidence 
to the remainder of the computed results shown there. 
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3. CALCULATION OF THE [> 1 ASYMPTOTIC LIMIT 

(a) General Development 

This asymptotic limit of the Coulomb excitation process corresponds to physical 
effects of low projectile temperatures and/or large transition energies that result in a 
slow adiabatic collision. Unfortunately, as we see in the rather lengthy discussion 
which follows, obtaining the appropriate limiting behavior will be mathematically 
and computationally much more difficult than for the 6 = 0 case. The physically 
important feature of the excitation functions for ion projectiles will be their resulting 
exponential decrease [cc exp(-2&)] for large values of 5, which reflects the adiabatic 
character of the collision process. 

We initially follow the work of Brussaard et al. [l I] and Ter-Martirosyan [13] and 
consider the orbit integral (3). For 5 > 1 the exponential in the integrand is a very 
rapidly varying function of w. We therefore use the method of steepest descent and 
shift the path of integration over the point of stationary phase w,, = ---in + 
i arctan[(E2 - l)1/2], where d/da (c sinh w + w) = 0, and the resulting noncanceling 
contribution to the integral is sharply peaked at w,, . It is important to note that the 
remaining slowly varying part of the integrand may also have poIes at some of these 
points of stationary phase. Expanding all of the terms in the integrand about p = 
w - o,, , we have correct to third order in p [13] 

4.,(x, 0 = exp (-4 -i$t)s_*,exp(-$+J$-) 

[-p(1 + X2)1/2]” 
x [-(p/2)@ + 2ix)]A+‘” dpp (15) 

where x = (e2 - l)li2, and we have taken x-arctan x N -x3/3 since t> 1. To show 
the explicit dependence on the important quantity E, we now change variables in (15) 
to s = xf113 and y = pe 1/3, and the approximate expression for I,,, then reads 

Z,&(-1/3, f) = 2” exp(-nf - s3/3) t(2A-1)/3Q(p - A, -A - p; s), (16) 

where we have put the factor (1 + s2~-2’3) N 1 for 5 > 1. The additional function, Q, 
in (16) will prove to be the key to all of our subsequent development, and is defined 
as [11] 

Q(k, m; s) 3 i-“+ J-1 ( ew 
SY2 -+Jp) Y’(Y + 2is)” dyv, (17) 

where k and m are positive or negative integers. From definition (17) we see that the 
Q-functions are real and can be written in the alternate form 

Q(k, m; s) = 2 irn exp (- $-) yk( y2 + 4s2)‘@! 

x cos [ -$ + m tan-l -$ ( ) - $ (k + ml] dy, (18) 
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where for k < - 1 we must augment (18) to properly account (in the Cauchy principal- 
value sense) for the pole on the path of integration at y = 0. 

To obtain the appropriate forms for the complete excitation functions, I,,r in (16) 
must now be integrated over all possible scattering angles as in (4) and (8). Since 
s = [II3 cot(8/2), this gives for electric transitions 

.fA,,(Eh, 5 > 1) N 2t(4A-4/3) exp(--2rr[) 4” 

x 6 exp (- -2$-) [Q(p - A, -A - p; s)]” s ds (19) 

and for magnetic transitions 

~A,,(Mh, 6 > 1) N 25(4A-6/3) exp(--2&) 4A 

x lo exp (- -2$-) [Q(~.L - A, -A 

The asymptotic expansion coefficients are now defined as 

and 
Q(Eh) = ((44n/3) exp(2rrf)fEA([ > I), 

sZ(MA) = f(24n/3) exp(2&)f,,(t > 1). 

p; s)]” s3 ds. (20) 

(21) 

cm 

Using the general expressions for the excitation functions given previously, we obtain 
the final results: 

LyEA) = C(A) z &A, p) u=--I 
(u+l.even) 

X ia exp (- F) [Q(p - h, --A - p; s)]” s ds, (23) 

x lam exp (- --2$-) [Q(p - h - 1, -A - 1 - p; s)12 s3 ds, (24) 

where 

C(A) t 8rr2qA/(2A + I)“. 

The only obstacle that now remains to be overcome is the evaluation of the double 
integrals required [compare, for example, Eqs. (17) and (23)]. Were it not for the fact 
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that any general Q-function as defined by (17) can be reduced to linear combinations 
of only four basic Q-functions, the numerical evaluation of these integrals would be a 
most tedious and prohibitively time-consuming task. 

(b) Reduction of the Q-Functions 

Again initially following the work of Brussaard et al. [l I], we now examine the 
behavior of the general Q-functions defined in (17). As was remarked in the previous 
section, their numerical evaluation would be prohibitive were it not for the fact that 
they can be reduced to expressions involving only polynomials in powers of s and s-l 
times the following four basis functions: 

Q<l, 0; s>, Q(Q 0; s>, Q(- 1, 0; ~1, and Q<O, -1; ~1. 

The pattern for these important reductions can be seen by considering the integral 
definition (17) for the Q-functions. Since for our particular physical problem of 
Coulomb excitation the quantities k and m are specifically k = p - X and m = 
-X - p, the fact that --h d p < + h means that k and m are initially bounded by 
-2h < k, m < 0. Thus, we see that what is required for the general reductions are 
recursion relations that will raise the general values for k to + 1, 0, or - 1 and m to 0 
or -1. 

The most general recursion relation is obtained by a simple integration by parts in 
(17) to give 

Q(k, m; s) = (m + l)-‘[-kQ(k - 1, m + 1; s) - $Q(k + 1, m + 2; s)] 

for m < -2. (25) 

This relation can then be applied repeatedly to increase the value of m (at the expense 
of lowering k) until m = - 1. The last allowed iteration at m = -2 will thus be 
expressed in terms of Q-functions with m = - 1 and with m = 0. Note that (25) results 
in the accumulation of only constant coefficients. To bridge the gap at m = - 1, the 
expression for Q(k, - 1; s) must be reduced by a partial-fraction expansion of the 
integrand in (17) for k < 0 as 

Yk _ (-2iS)k 
y + 2is 

f (-2is)Z-l-lkl y-t 
y + 2is kl 

(26) 

[14, p. 1681. This expansion shows that 

Q(k, -1; s) = (-2s)” Q(0, -1; s) - c (-2s)“+‘-’ Q(-1, 0; s) for k < -1. 
Z=l 

(27) 

Since k is negative in this case, we see that (26) introduces negative powers of s into 
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the accumulated recursion coefficients. For k > 0 we must use repeated synthetic 
division to yield 

Y” (--2is)‘; k-l 

___ = y5 + c (--2is)l yk-1-l. 
y + 2is l=l 

The third important recursion relation then becomes 

k-l 

Q(k, - 1; s) = (-2s)” Q(0, -I; s) + c (-2~)~ Q(k - 1 - Z, 0; s) for k 3 2, 
I=0 

(29) 

thus introducing positive powers of the variable s. Recursion relations (25), (27), and 
(29) will reduce a general Q-function to a polynomial in s times Q(0, - 1; s) plus 
polynomials in s times Q-functions of the form Q(fk, 0; s). Relations are therefore 
needed to raise or lower the index &k into the range k = I, 0 or +l. Using (17) for 
m = 0, an integration by parts gives 

Q(k, 0; s) = (k + l)-l[--sQ(k + 2, 0; s) - $Q(k + 3, 0; s)], for k < -2, (30) 

which will eventually reduce any Q(k, 0; s) for k < -2 to combinations of Q(l, 0; s), 
Q(0, 0; s), and Q(- 1,O; s). To lower k, we merely let k --f k - 3 in (30) to trivially 
obtain 

Q(k, 0; s) = -2sQ(k - 1, 0; s) - 2(k -,2)Q(k - 3, 0; s) for k > 2. (31) 

The five recursion relations (25), (27), (29), (30), and (31) thus suffice to reduce any 
general Q-function to its appropriate expansion in terms of the four basis functions. 

This very tedious reduction has been done algebraically only for the Q-functions 
generated for transition multipole orders up through X = 4 as given by Chattarji and 
Brussaard [15]. Since Coulomb deexcitation of long-lived s-process isomeric states [9] 
requires these reductions up to h = 10 (note that the number of Q-functions to be 
reduced for each value of h goes as X + I), the five recursion relations were pro- 
grammed to numerically accumulate the coefficients of the resulting polynomials 
multiplying each basis function in the expansion. 

As an example of the numerical technique involved in these reductions, in Fig. 1 we 
have schematically illustrated the reduction pattern for the function Q(-2, -14; s) 
which is one of the nine functions needed to calculate the asymptotic expansion 
coefficients for A = 8. The shaded square indicates the starting point at k = -2 and 
m = -14. The “axes” are labeled for all of the intermediate values of k and m 
encountered during the reduction. The dashed squares represent all of the intervening 
Q-functions generated (most of them several times each) in the reduction by the use 
of (25); the solid squares are the functions that result from the last allowed application 
of (25) yielding m = 0 or - 1. The last four remaining recursion relations to be used 
in the final reduction of the solid squares to the four basic Q-functions (indicated by 
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I*-12..13..14. vm 

.-i-J r-i-J ’ 
r-7 

r-+-J 

i-- .-.--A 

a. . 

,--t-J ,-t-j 

FIG. 1. The recursion relations given in the text (shown in the five insets) used to reduce the 
general function Q(-2, -14; s) (the shaded square) to linear combinations of polynomials in s 
times the four basic Q-functions (indicated by the doubly boxed squares). For the range in inter- 
vening values of k and m, the dashed squares are the intermediate Q-functions encountered along the 
way solely by application of (25), and the solid squares mark the Q-functions which must then be 
reduced by the remaining four recursion relations as shown. 

the four doubly boxed squares) are also schematically illustrated in the various insets 
in Fig. 1. We first use (27) and (29) to reduce those cases with m = - 1 directly to 
Q(0, - 1; s) and forms with m = 0. The final steps use (31) to lower the only remain- 
ing forms with m = 0 and k > 2 and (30) to raise k < -2 and m = 0 for a complete 
expansion. The numerical reduction program made use of these symmetries to 
perform first column-wise reductions in the matrix “array” suggested by the figure, 
followed by row-wise reductions (accumulating along the way all of the resulting 
polynomials in s) to the four basis functions. Although much of the theory given here 
was discussed by Brussaard et al. [ll], our explicit development of the required five 
basic recursion relations along with the numerical techniques for achieving the reduc- 
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tions is obviously much faster and more flexible than their hand-calculated algebraic 
reductions (only attempted up through h = 4). Since reductions for up to h = 10 
were required, the algebraic technique would have been so tedious as to have been 
prohibitive for our purposes. 

In Table II we have given the explicit numerical values of the coefficients of each 
polynomial multiplier of the four basic Q-functions generated in the reductions for 
h = 4. The entries in each row correspond to the coefficients of the power of s indicated 
on the left. The polynomial described by a given column multiplies the basis function 
given at the top of that column. Particular attention has been paid to minimizing the 
accumulated round-off error inherent in such recursive calculations. The particular 
results of our calculations for X < 4 were found to agree exactly with the hand-cal- 
culated reductions of Chattarji and Brussaard [15]. For example, they obtained as 
the expansion for Q(-6, -2; s): 

Q(-6, -2; s) = ($ s-6 + & s-3 + &) Q(1, 0; s) 

+ Gi 
r5 + & s-~ + & s) Q(0, 0; s) 

-- 
( 
6; s-7 + & s-4 + & s-l 

1 Q<-1, 0; s) 

3 
+ G s-‘Q(0, - 1; s). (32) 

Comparison with our corresponding result in Table II shows that it agrees exactly 
with the rational coefficients given in (32). 

(c) The Four Basic Q-Functions 

Using the form (I 8) we can immediately write down the real integral representations 
of the four basis functions required for their evaluation by Gauss-Hermite numerical 
quadrature as 

Q(l,O; s) = 2 lrn exp (q) w sin (-$) dw, 

Q(0, 0; s) = 2 irn exp (G) cos ($) dw, 

Q(--1,O; s) = v - 2 lm exp (q) o-1 sin (-$) dw, 

and 

(34) 

Q(0, - I ; s) = lm e~~~~~{2) [4s cos $ - 2w sin $1 dw. (36) 
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TABLE II 

Reduction to Polynomial Coefficients of the Four Basic Q-Functions for X = 4 

sc*c -7, 
s**< -b, 
5**c -5, 
s**t -4) 
s**c -2, 

4.464*857D-03 0.0 . c .o 
Fl:: I .69642860-o* :.: 0.0 
4.76190480-03 ::: 

2.08333330-cz 
. ::z 

c.0 9.52380950-03 :.: 0.0 

* * l t 

0.C 
4.6875300”-02 

:-: . 
1.5.5250000-02 
C.0 
0.0 
8.33333330-03 
0.0 

0.0 
::L37500aD-02 
E:o” 
2. IB750COD-02 
0.0 
J.C 
1.6666667D-32 

-4.bt17’53000-02 
0.0 
7.c 

-3.1?59Coo”-Cf 
3.c 
0.r 

-I .C416667D-02 
i) . Ti 
ci.‘) 

9*b*750CoD-C* 
. 

o”.,’ 
50:: 
C.C 
::: 
3.0 

LAMBDA = 4.*u= 0 

O( -4. -4;s) 

c.0 
::c” 

-L.5b253oCD-OI 1.5c250c OD-01 
,.56250CcD-01 0.C . 
0.0 ,.5625oooD-31 C.C i.“, 

E:E 
0.0 -5.ZOUJ333D-CZ -s.Z;RJ333D-32 
2.0t33333m-02 0.t 0.C 

LAMBDA = rr.t.w= 2 

* 

0 .‘I 
4.6H75000D-02 
0.C 

. 
-~.~6250000-02 

c”:: 
8.3333333D-03 

* 
“,*z 
4:bd75000D-02 
0.0 
0.0 

-9.37500050-03 
0.0 
3.0 

-4.b87530CD-OP 
0”:: 
C.0 

::: 
0.0 
0.0 

sr*t 0, ‘%.Vbe2*57D-03 . 0 .o C.0 
SL*t 

4: 
. 

i.0” 
-:.:357LUm-,3 

pp 
0.0 

s**t 0.0 
5**c 3) -4.76,9045D-03 0.0 . 

;.0$333330-02 
. 
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The additional term z- in (35) represents the contribution from the pole at o = 0, 
and the remaining term is the Cauchy principal value of the integral. One additional 
numerical complication arises, however, because we must integrate the reduced 
Q-functions from 0 to co [see Eqs. (23) and (24)]. As was mentioned in the last 
subsection, the resulting polynomials in our reduction scheme often contain negative 
powers of s. Thus for small s (<I) each basis function must first be expressed as a 
power series in s [I 11: 

Q(I, 0; s) = f 9 Q(2n -i- I, 0; 0) for I= -l,O,orl, (37) 
?z=O . 

and 

Q(0, -1; s) = f f v T-%"Q(31 - II - 1, 0; 0), 
n=O z=o . 

(38) 

where we have integrated the expansions term by term using the definition (17). For 
further details see [Ill. When these expansions are used, the negative powers of s 
indeed cancel exactly as they should (since physically we know the integrals over the 
Q-functions must be finite). When checking the results of Brussaard et al. [II] for 
these expansion coefficients, we found their values for Q(0, - 1; s) to be the victim 
of severe round-off error for the (negative) coefficients of the powers: s30-1,3n-2 
(for n = 1, 2,...) greater than about s r5, because they are computed as the differences 
of many nearly equal large numbers. Since our calculations were carried out to -27 
decimal digits (double precision on the CDC 7600 at Lawrence Berkeley Laboratory), 
we believe that this problem has been successfully avoided. 

In numerically evaluating the four basis functions for large values of s (Xl), the 
integral definitions (33)-(36) were used, while for small values of s they were evaluated 
using the series expansions (37) and (38). Expressions (33)-(36) were numerically 
integrated with a 64-point Gauss-Hermite quadrature scheme which gave agreement 
to six significant digits with the direct series expansions at the s = 1 matching point. 
Note that these integral definitions become increasingly easier to evaluate for larger 
values of s since the exponentials in the integrands rapidly cut off the remaining 
troublesome oscillating factors. For s = 0, these integrals can be performed analytical- 
ly to yield the results [16] 

Q(l, 0; 0) = 22/331/6r($), 
47r 

Q(O, O; O) = Q(1, 0; 0) 31/z 7 

and 
Q(-1, 0; 0) = Q(0, -1; 0) = 2~/3. 

As s -+ co, all of the integrals in (33~(36) vanish and we are left with only 

Q(-1, 0; co) = n. 
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The explicit behavior of these basis functions is illustrated graphically in Brussaard 
et al. [ll]. 

(d) Numerical Results 

To illustrate the general behavior of the Q-functions, we have shown in Fig. 2 the 
Q-functions that contribute to h = 4. The range has been limited to 0 < s < 5 since 
the required integrals over the squares of the Q-functions are all weighted in the 
integrand with the factor exp(-2s3/3) N 6 x 1O-37 for s = 5. Further examination of 
the integrands in (19) and (20) shows the greatest weight to be given to values of the 
Q-function near s N (#I3 and (Q)1’3. Note that at s = 0, eq. (17) shows that all of the 
Q-functions for a given X are equal, since the result is independent of CL. 

Once the Q-functions have been reduced for each contributing value of p for a given 
X, the required integrals in (23) and (24) were performed numerically by repeated 
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FIG. 2. The five Q-functions (as a function of s) needed for X = 4 transitions. 
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application of 32-point Gauss quadratures over the interval 0 < s < 5. Note that (23) 
and (24) show that the Q-functions computed at the quadrature points for the evalua- 
tion of 52(EA) can be stored and used for the subsequent evaluation of In[M(X + l)] 
without having to recompute them. The final results for the asymptotic expansion 
coefficients s2(EX) and sZ(Mh) are as given in Table III up through h = 10. The 

TABLE III 

Asymptotic Expansion Coefficients for the & > 1 Limit of the Coulomb Excitation Functions5 

Multipole order 
0) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Q(E4 Szo 

63.65 3.912 

18.81 0.4287 

4.547 5&x(-2) 

0.8860 6.973(-3) 

0.1417 7.834(-4) 

1.901(-2) 7.848(-5) 

2.177(-3) 7.011(-6) 

2.162(-4) 5.610(-7) 

1.887(-5) 4.043(-S) 

1.463(-6) 2xX0(-9) 

“Note that r(s) = r x 10”. 

division of the integration interval into six such panels was found to give six-digit 
agreement with the analytical result for QEl) given below. As an additional check, 
the coefficients-L?(E3), L&ES), Q(M2), and in(M7) were recomputed using 12 divisions 
for the 32-point quadratures and the results were in complete agreement with those 
obtained with only six panels as given in Table III. The only reliable benchmark for 
checking these results comes from the analytic expression available only for El 
transitions [l]: 

or 
f,& > 1) N 32~“/9(3)l/~ exp(-2an (39) 

J&El) = 32r3/9(3)l12 = 63.64971 . . . . WI 

Our corresponding result in Table III was actually calculated to be 63.649704, in 
excellent agreement with (40). However, the results (rounded back to four significant 
digits) of Brussaard et al. [I 1 J were 

@El) = 63.65, s2(Ml) = 3.912, 

and ii’(E3) = 7.254. 

In(B2) = 18.81, Q(M2) = 0.9053, 
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Note the large disagreement with our values for R(E3) and Q(M2) shown in Table Ill. 
In the light of the round-off errors in their tabulations mentioned earlier (not to 
mention the numerous errors in the text of their paper), we believe our results to be 
the correct ones, since all of the values in Table III were calculated by the same 
general numerical program using extended precision arithmetic. 

One final point about the asymptotic expansion coefficients can be illustrated [2] 
by multiplying the only numerical data available in Alder et al. [I] by exp(27& and 
the appropriate power of 6 [see Eqs. (21) and (22)] such that the resulting value as 
.$ + co becomes our asymptotic constant. The solid curves in Fig. 3 show the result 

100 

FIG. 3. Multiplication of the excitation functions by exp(2nt) and the proper poweriof 6 (see the 
text) such that the asymptotic values approach finite constants (the dashed lines connected with 
arrows to the proper curves). The solid curves were calculated from the numerical results of Alder 
et al. [l]. 

of such a transformation. The arrows connect each curve with its appropriate 
asymptotic value (dashed line) from Table III. One sees that the EA curves flatten out 
sooner (E - 1) than the Mh curves. From these (admittedly somewhat limited) 
comparisons it would seem that use of the asymptotic expansions down to c - 1 
should probably be good to within a factor of two for the Eh cases but may under- 
estimate the exact results for Ml and 442 transitions by up to a factor of 5 at e = 1. 
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4. CONCLUSIONS 

Owing to the wide variety of electric and magnetic transition orders required for 
astrophysical studies, we have systematically performed calculations of the expansion 
coefficients of the limiting cases of the classical Coulomb excitation functions up 
through h = 10. The transformations to numerically tractable forms have been 
presented for both sudden (5 = 0) and adiabatic (!$ > 1) collisions with particular 
attention paid to developing the properties of the recursion relations required for 
programming the [ > 1 evaluation. Considerable disagreement was found between 
our work and that of Brussaard et al. [I I] for values of the t > 1 asymptotic expan- 
sion coefficients for h 3 2. 

The numerical values of the expansion coefficients presented in this work can now 
be used (with more than adequate accuracy for the anticipated astrophysical applica- 
tions) to calculate Coulomb deexcitation rates in stellar interiors. The thermonuclear 
averages over a Maxwellian distribution of relative target-projectile energies can be 
explicitly performed for the extreme cases of 5 -+ 0 (high temperatures) and 4 > 1 
(low temperatures), and intermediate cases can be smoothly interpolated [6] between 
these limits as a function of stellar temperature. Since these deexcitation rates will 
vary over many (tens!) of orders of magnitude as the projectile temperature ranges 
from lOa to 10l°K [6], the moderate errors of a factor of only 2 to 5 induced by using 
our limiting cases are negligible in the astrophysical context. 
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